PGDM (RM) (17-19) Supply Chain Management RM-106

Trimester – I, End-Term Examination: September 2017

Time allowed: 2 hrs 30 min

Max Marks: 50

Roll	No:	

Instruction: Students are required to write Roll No on every page of the question paper, writing anything except the Roll No will be treated as **Unfair Means**. In case of rough work please use answer sheet.

Sections	No. of Questions to attempt	Marks	Marks 3*5 = 15	
Α	3 out of 5 (Short Questions)	5 Marks each		
В	2 out of 3 (Long Questions)	10 Marks each	2*10 = 20	
С	Compulsory Case Study	15 Marks	15	
	Y Card	Total Marks	50	

SECTION A

- A1. Explain the concept of efficient and responsive supply chain with the examples. Differentiate between these two concepts with respect to inventory, facilities, transportation, sourcing and pricing. [5 Marks]
- A2. Analyze any latest trend in supply chain. How it has influenced the different aspects of retail supply chain? [5 Marks]
- A3. Explain the concept of fixed order quantity model and fixed period model in inventory management. Differentiate between these two inventory models in-terms of different criteria. [5 Marks]
- A4. In order to improve its supply chain, last year Snap deal started six new warehouses across national capital region, Lucknow, Hyderabad and Kolkata. Explain how the expansion of facilities in Snapdeal would have affected inventory and transportation cost?
- A5. What types of distribution networks are typically best suited for regular commodity items? Justify your answer with examples. [5 Marks]

SECTION B

- B1. Select one retail firm of your choice and analyze the concept of supply chain drivers and its different types, such as facilities, inventory, transportation, information, sourcing and pricing with reference to that firm. Evaluate the important role of each of its driver in creating a strategic fit between supply chain strategy and competitive strategy of a firm.

 [10 Marks]
- B2. Explain any three design options for a supply chain distribution network. Evaluate how it will affect the cost and service factors. [10 Marks]
- B3. a) William Beville's computer training school, in Richmond, stocks workbooks with the following characteristics: [5 Marks]

Demand D= 19,500 units/year Ordering cost S= \$25/order Holding cost H= \$4/unit/year

- i. Calculate the EOQ for the workbooks?
- ii. What are the annual holding cost for the workbooks?
- iii. What are the annual ordering cost?
- b) Henrique Correa's bakery prepares all its cakes between 4 A.M. and 6 a.m. so they will be fresh when customers arrive. Day-old cakes are virtually always sold, but at a 50% discount off the regular \$10 price. The cost of baking a cake is \$6, and demand is estimated to be normally distributed, with a mean of 25 and a standard deviation of 4. What is the optimal stocking level? [5 Marks]

SECTION C

An online fashion apparel e-commerce firms sells two different types of apparels. First category A includes white shirts which are high premium, classic apparel products. Second category B includes t-shirts which are regular trendy apparel products. For the first category A: these types of white shirts are demanded throughout 365 days by customers. Due to high margin involved in these white shirts, e-commerce firms closely monitor status of inventory level and firm places a fresh order whenever remaining quantities drop to the reorder-level. For the second category B: t-shirts are ordered from a local suppliers and stocks are counted periodically. The following are specific information related to different product categories:

For product category A: Annual demand for these white shirts is 13,000 units, weekly demand is 250 units with standard deviation of 40 units. The cost of placing an order is \$100

and time from ordering to receipt is four weeks. The annual inventory carrying cost is \$ 0.65 per unit. The firm wants to maintain 98 percent service level probability.

For product category B: Annual demand of t shirt is 6,000 per year. The firm operates 365 days per year. Every two weeks (14 days) inventory is counted and new order is placed. It takes 12 days for the t-shirts to be delivered. Standard deviation of demand for the t-shirts is six per day. There are currently 100 t-shirts on hand. The firm would like to develop an inventory policy of a 95 percent probability of not stocking out.

- What is the inventory control system for product category A and product category B?
 [6 Marks]
- What should be the reorder order quantity for product category A and product category B?
 [6 Marks]
- 3. Suppose the production manager is told to reduce the safety stock of product category A items by 50 percent. If this is done, what will be the new service probability?
 [3 Marks]

Table 1: Table of the Standard Normal Cumulative Distribution Function $\Phi(z)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.0
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.000
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.000
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.000
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.000
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.001
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.001
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.001
-2.7	0.0035	0.0023	0.0024	0.0023	0.0031	0.0030	0.0029	0.0021	0.0027	0.002
-2.6	0.0033	0.0034	0.0033	0.0032	0.0031	0.0040	0.0029	0.0028	0.0027	0.003
-2.5	0.0047	0.0043	0.0059	0.0043	0.0055	0.0054	0.0052	0.0051	0.0049	0.004
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.006
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.008
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.011
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.014
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.018
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.023
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.029
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.036
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.045
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.055
					0.0018	0.0000	0.0394	0.0382	0.0694	0.068
-1.4	0.0808	0.0793	0.0778	0.0764						
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.082
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.098
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.117
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.137
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.161
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.186
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.214
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.245
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.277
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.312
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.348
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.385
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.424
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.464
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.535
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.575
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.651
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.687
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.722
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.754
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.785
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.813
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.838
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.862
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.883
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.901
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.917
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.931
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.944
							100 100 100 100 100 100 100 100 100 100			
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.954
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.963
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.970
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.976
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.981
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.985
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.991
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.993
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.995
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9940	0.9948	0.9949	0.9963	0.996
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.997
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.998
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.999
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.999
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.999
	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.999
			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
3.3	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.999