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Abstract— Volatility of VIX or VVIX is an indicator that is based upon volatility index or VIX. Volatility index or VIX is also known as ‘investor fear gauge’.
It is an indicator that may be considered as a strong indicator of investors’ fears and emotions (Durand et al., 2011; Whaley, 2009). It measures
investors’ view of the market’s volatility in the immediate term. The VVIX Index is on the other hand, an indicator of the expected volatility of the 30-day
forward price of the VIX. VVIX may provide a further insight into the investors’ expectations about future volatility in the market (Nikkinen & Peltomaki,
2019). VVIX is an interesting market indicator that provides an indication towards future tail risk (Park, 2015). The objective of this study is to offer a
unique and simple method of forecasting VVIX. Our argument is, forecasting of VVIX may help market participants in gauging the possibility of tail risk,

and may lead to better investment decision.

Index Terms— Auto Regressive Integrated Moving Average (ARIMA), Extreme event, Forecasting, Tail risk, VVIX,

1 INTRODUCTION

Volatility of volatility index or VVIX captures the expected
volatility of VIX. According to Park (2015), VVIX may be a
good tail risk indicator. Tail risk may be defined as
extraordinary risk that may fall beyond the +3 standard
deviation. Most of the financial models e.g. the modern
portfolio theory, Black and Scholes derivative pricing model
etc. assumes a normality of sample as a basic assumption. A
normal distribution curve assumes that, given enough
observations, all values in the sample will be distributed
equally above and below the mean. About 99.7% of all
variations falls within three standard deviations of the
mean and therefore there is only a 0.3% chance of an
extremeeventoccurring (https://www.nasdag.com/articles/fat-
tail-risk-what-it-means-and-why-you-should-be-aware-it-2015-
11-02). However, in practice there are many instances of
extreme event happening in stock markets across the
world. The US subprime crisis (2008) is probably the
most significant instance in recent times. Park (2015)
demonstrated in his seminal paper, that VVIX may prove
to be a useful tool for predicting tail risk.

Our argument is, forecasting of VVIX may help the
market participants in gauging the possibility of tail risk
or extreme events, and may lead to better investment
decisions. This paper develops an analytical model for
forecasting VVIX in the auto-regressive integrated
moving average (ARIMA) framework for the period
starting from March 2009 to October 2016. In this
context, our first contribution to the literature s
methodology. To prove the robustness of our model, it is
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validated by using daily data from November 2016 to
October 2017.This study uses CBOE VVIX, which is traded
at the Chicago Board of Exchange (CBOE) platform, USA.
VVIX is a volatility of volatility index launched by CBOE, which
measures the expected volatility of CBOE volatility index
(VIX). The motivation of this study lies not only on the
widespread agreement that VVIX is a good predictor of fat tail
risks (Park, 2015), but also on the fact that there are many
trading strategies that rely on the VVIX index for speculative
and hedging purposes. It is important to being aware of
possibility of extreme events. Also adopting an adequate
hedging strategy for addressing possible tail risk events is also
important to protect investments from economic turmoil. The
ideal portfolio should not only generate good return for each
unit of volatility, but also should be able to protect itself from
tail risk. A good model for predicting VVIX can prove itself
useful in this regard.Since the CBOE VVIX is a good predictor
of extreme events in near future, so by forecasting the future
value of CBOE VVIX, we may create a better trading strategy
to avoid losses. The objective of this study is to fit a
forecasting model on CBOE VVIX using ARIMA. The model
would be useful predicting future movement of volatility and
expected extreme events.VVIX is also less prone to
measurement error. VVIX is in a sense the volatility predicted
by market participants. (Ptuciennik, Buszkowska, 2006). With
the advent of volatility based indices, it is important to develop
a model that may make a reliable forecast of VVIX, as a
predictor of ‘fat tail risk’.The rest of the paper is organized as
follows. Section ‘objective’ describes the motivation behind the
study. Section ‘period of study and data’ underlines the period
covered under this study for fitting this model and also for
validating the same. The section ‘description of methodology’
presents the description about methodology used in this paper.
The section ‘empirical results and analysis’ shows the data
analysis with the estimated results. The section ‘evaluation of
forecasts’ presents the validation of the model. And finally, the
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paper concludes with the section ‘conclusion and scope’,
which also indicates towards few areas for further research.

2 OBJECTIVE

The objective of this study is to develop a forecasting model to
predict CBOE VVIX. We apply auto-regressive integrated
moving average (ARIMA) technique for developing the model.

3. PERIOD OF STUDY

The period of study under consideration is from March 2009
until October 2016 for fitting the model. We also used daily
data from November 2016 to October 2017 for validating the
ARIMA model. The daily closing value of VVIX is downloaded
from the website of the Chicago Board of Exchange
(www.cboe.com).

4. DATA AND METHODOLOGY

This section describes the methodology used for designing the
VVIX model that forecasts the future direction. For this
purpose, the ARIMA model has been used. But before that the
unit root test has been performed to check the stationarity of
the dataset.

4.1 Unit root analysis

As many a times, the time series variables suffer from the non-
stationary problem, we have tested for unit root under
augmented Dickey-Fuller (ADF) test. Section 5.1 shows the
result and analysis of ADF test.

4.2 ARIMA

The basic idea behind ARIMA or the Box-Jenkins (BJ)
methodology for forecasting is to analyse the probabilistic or
stochastic properties of economic time series on their own
under the philosophy “let the data speak for themselves.” This
concept is very different from traditional regression models, in
which the dependent variable Y, is explained by k explanatory
variables X, Xp,.eviininnnnn X,, the BJ time series models allow
Y, to be explained by the past, or lagged, values of Y, itself and
the current and lagged values of u,, which is an uncorrelated
random error with zero mean and constant variance o® — that
is, a white noise error term. The BJ methodology is based on
the assumption that the time series under consideration is
stationary.

4.2.1 The AR model
Consider the following model:

Y=BotB1Y 1 +BoY o+ ... +BpYiptu;
Where u, is a white noise error term.
This model is termed as an AR model of order p, AR (p), for it
involves regressing Y at time t on its values lagged p periods
into the past, the value of p being determined empirically using

some criterion, such as the Akaike information criterion.

4.2.2 The MA model

ISSN 2277-8616

The AR process is not the only mechanism that may have
generated Y. In some situation, it might be possible to capture
the process of generation of Y, series by following model.

Y=uetOuy_

Where, as before, u, is a white error term. The model implies
that Y, is determined as a MA of the current and immediate
past values of the error term. This model is called the first-
order MA or MA(1) model.

The general form of the MA model is an MA(q) model of the
form

Y =EU+O Ui 1+05Ui o+........ +OqUeq

It appears that a MA process is simply a linear combination of
white noise processes, so that Y, depends on the current and
previous values of a white noise error term. Further, as long as
g is finite, the MA(q) process is stationary as it is an average of
g stationary white noise error terms which are stationary.

4.2.3 The ARMA model
If we suppose that Y, has characteristics of both AR and MA,
then it is called ARMA process. For example, an ARMA (1,1)
model may be written as

Y=PY+utOu,

In general, an ARMA (p,q) process will have p AR and q MA
terms. It is written as

Y=D, Y 1+D,Y ot +D, Y pHUHO U1 +O,Upo+...... +63U¢q

4.2.4 The ARIMA model

If a time series is integrated of order d and we apply ARMA
(p,g) model to it, then we say that the original time series is
ARIMA (p,d,q), i.e., itis an ARIMA time series. Clearly, if a time
series is ARIMA (2,1,2), it has to be differenced once to make
it stationary and the stationary time series can be modelled as
ARMA (2,2) process, i.e., it will have two AR and two MA
terms. Similarly, an ARIMA (p,0,p) series is same as ARMA
(p,g) when the time series is stationary at the beginning. On
the other hand, ARIMA (p,0,0) and ARIMA (0,0,q) series
represent AR (p) and MA (q) stationary processes,
respectively. Thus, given the values of p,d, and g, one can say
what process is being modelled.

5. EMPIRICAL RESULTS AND ANALYSIS

This study fits a forecasting model based on CBOE VVIX, the
indicator of extreme events. The study considers log of daily
VVIX (LVVIX) value. The idea behind plotting the log of a
variable represents a relative change (or rate of return),
whereas a change in the log of a variable itself represents an
absolute change. Returns are unit free and they are
comparable (Gujarati, 2015). The total number of observations
are n=616.

5.1 Test of Stationarity
First test of stationarity of the time series data is tasted. To test
stationarity, the ADF test is being used. The test is performed
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by using the following form:

ALVVIX; = B; +Byt +B3 LVVIXy g + T2 &, LVVIXy g + & (@H)]

In each case, the null hypothesis is B; = 0 (i.e. unit root exists)
and the alternative hypothesis is that B; < 0 (i.e. no unit root).
The result of the unit root test of LVVIX with intercept is shown
in table 1.

Tablel: Uit roottesto fVVIX wich is eroept

Nl Hypabmis LN_VWIX &= 2 vkt oot
Exgeccus: Cosstane, Licex Trand
Lag Lang® O (Astomasc -based os SIC, maxiag=1S)

Prob.®
Acamecsed DickopFoller imtstasa s Q0030
Test criscal viloes 1%6 Joved
3%6 el -
10%6 Joved -3.130953
*UMxKimooa (1996) cce-1uded pazioe
Aogmented Dick o Fuller Tost Equasce
Depandacz Vanidle DAN_VVIN )
Mahod Lees: Sguwes
Dete: 122419 Time 15:03
Sample 24msed) 108 2007101352018
Iciuded obsavasons §1%after admatments
Variable CoefSqeam S Ercor tStamic Prob
IN_VVIX_(-1) 0262920 0.027386 -9.600639 0.0000
Cc 1156340 0.120808 9571724 0.0000
STREND("101'2007) S6.6SEQS 230E-05 2907163 00038
R-sguamd 0130951 Mom depmdant v

o.a2s111
0.097003

Adjuased R-aguamd
SE of mgmauion

SD. depandent var

Akskom D caterice

Sumsgoxrad md 3758693 Schwarzcresce

Loz Ekebood 363.6381 Hamoze-Quico aiter -1814891
F-azasatic 4610889 Dudia-Wason st 2092748
ProbF wzasc) 0.000000

As the R? (0.130951) is less than Durbin-Watson stat
(2.092748), therefore the regression is not spurious
(Bhowmick, 2015).

Table 1 shows the results of ADF test. The LVVIX lagged one
period. The ADF test statistic is (-9.600639). However, the DF
critical values are -3.973046 (1% level), -3.417142 (5% level),
and -3.130953 (10% level). In absolute terms, 9.600639 is
greater than any of the DF critical t values in absolute terms.
Hence, the conclusion is that the VVIX time series is stationary
(Guijarati, 2015). To confirm, also plotted the graph of LVVIX
over time (Figure 1). The graph confirms the stationarity of
LVVIX.

Figure1: LVVIX time series
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5.2 DETERMINATION OF P,Q, AND D

As the LVVIX is stationary time series with level unit root,
therefore we consider the value of d=0. We already have
showed that the level order time series LVVIX is stationary. So,
we work with LVVIX only here. To see, which ARIMA model
fits LVVIX, and following the BJ methodology, we computed
the correlogram of this series upto 36 lags. For determining
the number of lags, we followed the rule of thumb suggested
by Schwert (1989). Due to space constraint, we show the
correlogram upto 15 lags in Table 2 below. The complete
correlogram is given in annexure Al at the end of this paper.

Table 2: AC fumton and PAC fumction of LYVYVIX
Date: 122419 Time: 1528

Sampie: 10172007 107152018
Ihchaded cbservatons §16

Aptocorrel abon Pattal Correlabon AC PAC (QStat Prob
LR ] ERmEw 1 i TS E |:| TEE FED "'!S c“"‘:
Jrasa 2 0600 0088 57658 0.000
e 3 0502 0065 733.31 0000
. = 4 0456 0098 26267 0.000
. 5 0.385.0052 955.02 0.000
g 6 03230002 10301 0000
e 7 0258 0062 1075.6 0.000
e 8 0281 0022 11250 0000
i 9 02450019 11627 0000
N 10 01930041 11864 0000
" . 11 0201 0.092 12118 O.000
N 12 0225 0.087 12431 0.000
i . 13 0242 0.058 12800 000
N - 14 Q200 0075 13003 0000
- 15 0188 0,027 1327.8 0.000

Table 2 produces two types of correlation coefficients:
Autocorrelation (AC) and partial AC (PAC). The AC function
(ACF) shows correlation of LVVIX with its values with various
lags. The PAC function (PACF) shows the correlation between
observations that are k periods apart after controlling for the
effects of intermediate lags. The BJ methodology uses both
these correlation coefficients to identify the type of ARMA
model that is appropriate for this case.

Table 2 shows gradual decline of AC and changes in positive
and negative signs of PAC. However, it does not show any
sign of exponential decay for any sustained period.

To see, which correlations are statistically significant, we
calculate the standard error of sample correlation coefficients
given by i/m = ,f1/e1e = 0.040291, where n is the sample
size. Therefore, the 95% confidence interval for the true
correlation coefficients is about 0 + 1.96 (0.040291) = (-
0.07897 to 0.07897). Correlation coefficients lying outside
these bounds are statistically significant at 5% level. On this
basis, it seems that PACF correlations at lag(s) 1, 4, 11, 26 are
statistically significant.

Since we do not have any clear-cut pattern of the ACF and
PACF, we will proceed by trial and error.

First, we fit an AR model at lags 1, 4, 11, 26.

Then we fit an MA model at lags 1, 4, 11, and 26. The results
of AR (1,4,11,26) is shown in Table 3.
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Table 3: AR modelfitatlags 1, 4,11, and 26

Dependent Varniable: LN VVIX

Method: ARMA Max imum Likelihood (OPG - BHHH)

Date: 12724/19 Time: 17:09

Sample: 1/01/2007 10/15/2018

Included observations: 616

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic  Prob.
C 4478506 0.031811 140.7834 0.0000
AR(D 0.705154 0.026955 26.16000 0.0000
AR 0.087556 0.032379 2.704051 0.0070
AR(1D) 0.035300 0.030393 1.161437 0.2459
AR(26) 0.027778 0.025998 1.068467 0.2857

SIGMASQ 0.009261 0.000392 23.62167 0.0000

R-squared 0.583546 Mean dependent var 4.475200
Adjusted R-squared 0.580133 S.D.dependentvar  0.149247
S.E. of regression 0.096708 Akaike info criterion -1.822926
Sum squared resid 5.704961 Schwarzcriterion -1.779843

Table 5: MA model fit at lags 1,4,11,26

Dependent Variable: LN VVIX

Method: ARMA Max imum Likelihood (OPG - BHHH)

Date: 122419 Time: 17:31

Sample: 1/01/2007 10'15/2018

Included observations: 616

Convergence achieved after 26 iterations

Coefficient covariance computed using outer product of gradients

Variable Coeflicient Std. Error t-Statistic  Prob.
Cc 4475554 0.009023 4560396 0.0000
MAQD) 0.570309 0.029607 1926296 0.0000
MA@ 0.185465 0.034655 5.351718 0.0000
MAD 0.051046 0.037796 1.350590 0.1773
MAQS6) 0.036483 0.051429 1.160809 0.2462
SIGMASQ 0.012529 0.000611 2049319 0.0000
R-squared 0436586 MNiean dependentvar 4.475200

Adjusted R-squared 0.431968 S.D dependentvar  0.149247
S.E. of regression 0.112484 Akaike info criterion -1.521203
Sum squared resid  7.718161 Schwarzcriterion -1.478120
Log likelithood 4743306 Hannan-Quinn criter. -1.504452
F-statistic 9453697 Dumbin-Watsonstat  1.507357
Prob(F-statistic) 0.000000

Log likelihood 567.4613 Hannan-Quinn criter. -1.806174 Thus we use ARIMA (1,0,1), ARIMA (1,0,4), ARIMA (4,0,1) and
F-statistic 170.9498 Dusbin-Watson stat  2.017966 ARIMA (4,0,4).

Prob(F-statistic) 0.000000

Table 6 shows ARIMA (1,0,1) model fit.

Since the AR(11) and AR(26) coefficients are not significant,
we can drop these from consideration and re-estimate the
model with AR (1) and AR (4). The result is shown in table 4
below.

Table 4: AR(1) and AR(4) model for LVVIX

Dependent Vanable: LN VVIX_

Method: ARMA Max imum Likelihood (OPG - BHHH)

Date: 1224'19 Time: 17:22

Sample: 1/01/2007 10152018

Included observations: 616

Convergence achieved after 10 iterations

Coefficient covariance computed using outer product of gradients

Vanable Coefficient Std. Error t-Statistic  Prob.

Table 6: ARIMA (1,0,1) model fit

Dependent Variable: LN_VVIX

Method: ARMA Max imum Likelihood (OPG - BHHH)

Date: 1224/19 Time: 17:44

Sample: 1/01/2007 10/15/2018

Included observations 616

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Varniable Coefficient Std. Error t-Statistic  Prob.

C 4477141 0.021126 2119230 0.0000

AR(1) 0.809241 0.032594 24.82756 0.0000
MA() -0.120894 0.052698 -2.294120 0.0221
SIGMASQ 0.009414 0.000395 23.80936 0.0000
R-squared 0.576680 Mean dependent var  4.475200

Adjusted R-squared  0.574605 S.D.dependent var  0.149247
S.E. of regression 0.097342  Akaike info criterion -1.813276
Sum squaredresid ~ 5.799025 Schwarzcriterion -1.784554

C 4477465 0.024002 186.5462 0.0000 Log likelihood 562.4891 Hannan-Quinn criter. -1.802109
AR(D) 0.706885 0.027091 26.09262 0.0000 F-statisic 277.9048 Dusbin-Watsonstat  1.983480
AR() 0.101255 0.028943 3.498440  0.0005 PobF-altisfc)  DOOKNG
SIGMASQ 0.009310 0000394 2362713 0.0000
R-squared 0.581370 Mean dependent var  4.475200 In table 6, both the AR(1) and MA(1) is significant. So, we will
?‘g“ﬁ;‘d R-squared 83;2;83 S“Dﬁdeg;fnden_t var ?;iigi; consider ARIMA (1,0,1) for fitting the model.
. of regression X 2 Akaike info critenton -1.82 e ;
Sum squaredresid  5.734781 Schwarzcriterion  -1.795626 Next, we try ARIMA (1,0,4) for fitting the model fit.
Log likelthood 5658995 Hannan-Quinn criter. -1.813181 )
E-statistic 2833034 Dusbin-Watsonstat  2.022257 e
Prob(F-statistic) 0.000000 Vi LN VVIX
AEthod: ARMA Max imom Likslihood (OPG - BEHID
Inverted AR Roots 86 J4+401 14.46 -44 Date: 010220 Time: 11:36

In the next stage, we fit the MA model. Again, we go through
the trial and error method for MA(1), MA(4), MA(11) and
MA(26). The result of MA model is given in Table 5 below.

The model is significant at MA (1) and MA (4).

1JSTR©2020
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Samgle: 1012007 10°152018

Incioded observaticas 616

Coavergence achieved after 10 ecafions

Coefficient covanance computed using outer product of gradients

Vanable Coefficient Std Esror  tStaisic  Prob.

C 4476882 0018730 2388958 0.0000

AR(1) 0.737267 0026013 2834204 0.0000
MAS) 0.103093 0039804 2590031 0.0098
SIQASQ 0.009375 0000395 2371358 0.0000
R-squared 0578436 M\ian depeadentvar 4475200

Adjusted R-squared 0576369 SD dependentvar 0149247
SE. of regression 0.097140 Akakeinfocntenca -1.817410
Som squaredresid  5.774972 Schwarzeontenice -1.788687

Log kikelhood 563.7621 Fannao-Quimacriter. -1.806242
F-satssc 2799120 Dustin-Watsonstat 2.072121
Prob(F-statisac) 0.000000

Everted AR Roots 74

Ervertad MA Roots  40-40: A0-40i -40-30i -30-30
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From table 7, both AR(1) and MA(4) is both are significant. So,
we will accept ARIMA (1,0,4). Table 8 shows ARIMA (4,0,1)
results, in which both AR(4) and MA(1) is significant. So we
may accept ARIMA (4,0,1) also.

Table 8: ARIMA (4,0,1) mod el fit

Dependent Variable: LN VVIX

Method: ARMA Max imum Likelihood (OPG - BHHH)

Date: 010220 Time: 13:27

Sample: 1/01/2007 10/15/2018

Includad observations: 616

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std.Error t-Statistic  Prob.
C 4476031 0.012356 3622445 0.0000
AR®4) 0.367070 0.038749 9472948  0.0000
MA(D) 0.584715 0.030563 19.13131  0.0000
SIGMASQ 0.011593 0.000538 21.56872 0.0000
R-squared 0.478688 Mean dependent var  4.475200
Adjusted R-squared 0476132 S.D.dependentvar  0.149247
SE. of regression 0.108023 Akaike info criterion -1.604996
Sum squared resid 7.141414  Schwarzeriterion -1.576273
Log likelihood 498.3386 Hannan-Quinn criter, -1.593828
Fostatistic 187.3200 Dumbin-Watson stat  1.675612
Prob(F-statistic) 0.000000
Invertad AR Roots .78 00+.78i -.00-.78: -78

Inverted MA Roots -58

Next, we consider the ARIMA (4,0,4). The result is given in
table 9 below.

Table 9: ARIMA (4,0,4) model fit

Dependent Vaniable: LN_VVIX_

Method: ARMA Max imum Likelthood (OPG - BHHE)

Date: 01/02/20 Time: 11:46

Sample: 1/01/2007 10/15/2018

Included observations 616

Convergence achieved after 12 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std.Error tStatistic  Prob.
C 4476282 0014307 310.7119 0.0000
AR 0.687677 0.064834 10.60680 0.0000
MAE) -0.208982 0.083637 -3.574752 0.0004
SIGMASQ 0.017300 0.000826 20.93520 0.0000
R.squared 0.222056 Mean dependent var  4.475200
Adjusted R-squared 0.218242 S.D. dependentvar  0.149247
SE. of regression 0.131960 Akaike info criterion -1.2043%0
Sum squared resid  10.65699 Schwarzcriterion -1.175667
Log likelihood 3749520 Hannan-Quinn criter, -1.193222
F-statistic 5822955 Dubin-Watson stat  0.697311
Prob(F-statistic) 0.000000
Invertad AR Roots o1 00-911  .00+211 -91
Invertsd MA Roots 74 -00+74: -00-74 -.74

From table 9, it appears that ARIMA (4,0,4) is also suitable for
the model. So, the question is out of these four models ARIMA
models, which one we should select.

From the Akaike info criterion and Schwarz criterion, it may be
observed that the it's minimum in case of ARIMA (1,0,4)
model. It seems that the ARIMA (1,0,4) is the most appropriate
model fit to depict the behavior of the level differences of the
logs of daily closing VVIX over the sample period. After going
through the abovementioned tests, and under consideration of
principles of parsimony, finally, we select the ARIMA (1,0,4) or
ARMA (1,4) as a fit model for forecasting of VVIX. This model

ISSN 2277-8616

may be used as an estimator for predicting the future values of
VVIX.The generalized ARIMA (1,0,4) model may be written as
(Chatfield, 2003):

Xi = U(1-0)+a (X1)+B1€r1+B2612+B3e1s+B4ers

Or

Xi = H(L-a)+a (Xe1)+B1(Xe1 — Xe2)HB2 (Kiz — Xe3)+Bs (Xez — Xea)+Ba4
(X4 —X:5) 2

Now, we may put the values of ARIMA (1,0,4) from table 7 into
equation 2, where

M =4.476882
a=0.737267
B.=0
B.=0
Bs=0
B, =0.103093

By putting the abovementioned values in equation 2, the
model becomes,

Xy = 4.476882 (1-0.737267)+ 0.737267 (Xr.1)+ 0.103093 (X;.4 —Xt.
5) ©)

Using this model, we compute the difference between the
observed value and the computed model value for the sample
data using equation 3, and find root mean squared errors
(RMSE) equals to 0.097424, which again established the
appropriateness of model.

5.3 ARIMA Forecasting

We now use ARIMA (1,0,4) model for forecasting VVIX. Figure
2 shows the static forecast of VVIX. This figure shows the
actual and forecast values of logs of closing VVIX, as well as
the confidence interval of the forecast. The accompanying
table gives the same measures of the quality of the forecast,
namely RMSE, mean absolute error (MAE), mean absolure
percent error, and Theil inequality coefficient. The Theil
coefficient is very low (0.010880), suggesting that the fitted
model is quite good. This is clearly shown in Figure 2, which
demonstrates how closely the actual and forecast values track
each other.

Foracait:Lh VVIK F

LN_YWIX_
it samole: 1/01/2007 1915120

Symuneliic MAPE 1.405779

—— IN_WMX_F .. +7SF

Figure 2: Static forecast of LVVIX

6. EVALUATION OF FORECASTS
The forecast of VVIX appears to be very reliable on the basis
of the following criterion:

i. The estimated coefficients of both AR(1) and MA(4)
terms are statistically significant.
ii. The value of RMSE for the estimated ARIMA (1,0,4)
model is 0.097424, which is pretty low.
iii. The values of ‘bias proportion’, ‘variance proportion’
and ‘covariance proportion’ are 0.000001, 0.138589,
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and 0.861413. Since the values of ‘bias proportion’,
and ‘variance proportion’ is low and the ‘covariance
proportion’ is high, therefore the forecast may be
considered satisfactory.

iv. All inverted AR and MA roots are within the unit circle
(figure 3), which implies that the chosen ARIMA model
is stationary and the model has been correctly
specified.

For validation of the model, we again considered the daily
VVIX data from 22" October 2018 to 18" October 2019. Table
10 shows the beginning of month estimated value and the
observed value of log of VVIX by using equation 3. Though all
the computations are based on daily closing quotes of VVIX, in
table10, we only showed the month-end data for eleven
months due to limited space.

Inverse Roots of AR/MA Polynomial(s)
15

1.0

0.5

« ARroots 0.0
+ MAroots

-0.5
-1.0

-15
-1 0 1 |

Figure 3: Inverse roots of autoregressive / moving average
polynomials of VVIX

Table 10: Forecasted values of log of VVIX

Observed Model

Value Value

4.569439355 4564811784
4420029464 4504282961
4415219566 2
468662018 1363023227
370712849 4.370657506
564452374 4.456793932
4454347286 4506866548
4382526522 442366394
4620255794 4443080383
4.547541094 21650149278
4.581901528 4.599983336

Date

03.12.2018
07-01.2019
04-02-2019
04.03.2019 4
01-04-2019 4
06-05.2019 4
03.06.2019 4
01-07-2019
05-08.2019
02.09:2019
07-10-2019

7. CONCLUSION AND FUTURE SCOPE

Our objective was to fit a forecasting model for VVIX. Based
on literature (Park, 2015), we considered the VVIX as an
indicator for tail risk i.e. possibility of extreme events. We find
ARIMA (1,0,4) is the fittest model to forecast future VVIX
values. The evaluation of forecasting ARIMA model is also
found to be reliable. A reliable forecast of VVIX may prove to
be very useful in predicting how the possibility of extreme
event may emerge in near term. Investors may find this
extremely useful in taking investment decisions. They will be

ISSN 2277-8616

able to take appropriate hedging decisions to protect the
investment portfolio. This study may be extended by linking
VVIX with the VIX returns. A derivative trader may be able to
take a better decision by considering the forecasted values of
VVIX.
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